
DeepNode: The Evolution of Decentralized AI

J. Ruff, M. Agawa et al.

February 2024

1 Abstract

Markets have traditionally been used to efficiently allocate resources and com-
modities. We propose a novel approach to producing machine intelligence by
establishing a market where intelligence is priced by node-to-node interactions
among intelligence systems across the internet. In this proposed market, nodes
evaluate and rank each other by training neural networks to assess the value
of their neighbors. These evaluations are recorded on a digital ledger, where
nodes with higher rankings are rewarded monetarily with additional weight in
the network.

A significant challenge in this node-ranking system is its vulnerability to col-
lusion, which can compromise the accuracy of the rankings. To address this,
we introduce an incentive mechanism that maximally rewards honestly selected
weights, thereby making the system resistant to collusion affecting up to 50
percent of the network weight. This mechanism ensures a fair and reliable
intelligence market that continuously generates new models and compensates
contributors who provide information-theoretic value.

Similar approaches have demonstrated the utility of markets in various domains,
from the valuation of AI models [1] to the licensing of advanced technologies [2].
The proposed market framework aims to extend these principles to machine
intelligence, fostering a decentralized and efficient production environment.

The current approach to generating machine intelligence largely depends on
benchmarking systems, where machine learning models are optimized for nar-
rowly defined, supervised tasks. Although effective for enhancing performance
in specific areas, this method falls short in contexts where market dynamics
could be advantageous. Intelligence is increasingly being seen as a commod-
ity that is (1) costly to extract from data [1], (2) financially lucrative [2], (3)
transferable across different domains [3], and (4) broadly applicable [4]. Rely-
ing solely on supervised objectives to measure intelligence production fails to
reward the intrinsic value of the commodity and leads to a focus on specialized,
narrow applications [5]. Additionally, these objectives, often quantified using

1



single metrics like accuracy, lack the granularity needed to recognize the worth
of niche or legacy systems, resulting in their obsolescence. The diversity of in-
telligence systems is stifled by the necessity to develop large, monolithic models
that dominate in a competitive landscape. This centralization restricts indepen-
dent engineers from monetizing their innovations, leading to a concentration of
control among a few large entities.

Emerging commodities necessitate innovative market structures. This paper
proposes a system where machine intelligence is evaluated by other intelligence
systems. Models are assessed based on their informational output, independent
of the specific tasks or datasets they were trained on. This shift in evaluation cri-
teria allows the market to (1) reward intelligence that serves a broader range of
objectives, (2) monetize legacy systems for their distinct contributions, and (3)
enable smaller, diverse systems to thrive in a more granular reward environment.
The proposed solution involves a network of computers that continuously and
asynchronously exchange representations node-to-node (P2P) over the internet.
This market leverages a digital ledger to record rankings and provide decen-
tralized incentives, ensuring that trust is measured and rewards are distributed
based on value provided to the majority. This framework allows researchers
to monetize their contributions directly, and consumers to purchase machine
intelligence services directly.

2 Design

We commence with an abstract depiction of intelligence, as illustrated by Hin-
ton et al. [6], utilizing a parameterized function y = g(z) trained on a dataset
D = [Z, Y ] to minimize a loss function L = ED[Q(y, g(z))]. Our network com-
prises n functions N = {n1, . . . , nn}, termed ’nodes’, each possessing varying
amounts of network weight S = [wi] documented on a digital ledger. These
functions, combined with their respective losses and stake portions, create a
stake-weighted machine learning objective given by

∑n
i=1 Li · wi.

2



D1 D2 D3 D4

n1 n2 n3 n4

L1 L2 L3 L4

Figure 1: node functions with losses, Li, and unique datasets Di.

Our objective is to allocate stake I as a reward to nodes that contribute to min-
imizing the loss function (Figure-1). Crucially, this allocation method ensures
that it is challenging for a minority of stakeholders to collude and increase their
share in the network without effectively reducing the overall loss (Figure-3).

St+1 = St + τI

In this study, we propose that this objective can be accomplished via node-
ranking. Here, nodes utilize the outputs of other nodes G(z) = [g1(z), . . . , gn(z)]
as their own inputs g(G(z)) and determine a set of weights W = [wi,j ], where
each node imanages the i-th row through transactions recorded on a blockchain.

f0 f1 f2 f3

f0(x) f1(x) f2(x) f3(x)

y = f(G(x))

Figure 2: (a) Inter-function connectivity.

Weights are assigned using Fisher information pruning scores [7,8] in the ranking
calculation. The ranking R = WT ·S provides an optimal scoring method where
each node’s incentive aligns with its pruning score, defined as the entropy cost
towards

∑n
i=1 Li · si incurred by excluding it from the network.

ri ≈
1

n

n∑
j=1

∑
x∈Dj

∆FT (x)i · H(Qj(x)) ·∆F(x)i

Despite its merits, this method is vulnerable to collusion, where nodes self-
promote by voting for themselves rather than applying the ranking formula.

3



They manipulate the weights to inflate their own rankings, undermining the
network’s integrity. This issue arises because the digital ledger lacks the ca-
pability to verify individual model parameters, auditing only the inter-node
weights W.

3 Rewards

To prevent collusion, we have developed an improved ranking method incor-
porating an ’incentive’ function I(W,S). This function ensures that rewards
are given only to nodes that have not yet reached a consensus in the network.
Provided that no single group possesses more than half of the total stake, nodes
can only increase their stake by attracting votes from the majority.

To clarify, our incentive mechanism utilizes a stake vector S and a weight matrix
W, where the rows reflect inter-node rankings. Additionally, we infer a trust
matrix T from the weight matrix, where ti,j = 1 indicates a non-zero connection
between node i and node j.

We identify nodes that have achieved ’consensus’ as those with non-zero con-
nections from more than 50 percent of the total stake in the network. This is
represented by the normalized values of (T T · S) > 0.5. To maintain differentia-
bility in our mechanism, we employ the continuous sigmoid function. This func-
tion generates a threshold-like behavior, rewarding well-connected nodes while
penalizing those that are not trusted. The sigmoid’s steepness and threshold
can be adjusted using a temperature parameter ρ and a shift term κ.

C = σ(ρ(T T · S − κ))

4



0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

x =
∑

j tj,i · sj,i

σ
(ρ
(x

−
κ
))

Figure 3: Consensus function ci = σ(ρ
∑

j tj,isj − κ) with temperature ρ =
10 and shift κ = 0.5. The activation takes the trust scores and produces an
exponential scaling up to our inflection point where a node is connected to the
majority.

We apply the consensus term to adjust the initial rankings. As nodes gain more
weight in the network, their inflation increases exponentially up to 0.5. Later,
we demonstrate how this mechanism ensures that the larger of two competing
sub-networks acquires an exponentially greater share of the network by inflation.

I = R · C

4 Bonds

The previously discussed consensus mechanism guards against straightforward
collusion by making it challenging for small groups to manipulate inflation.
However, it lacks an incentive for the accurate selection of weights. To address
this, we modify the inflation mechanism to include a speculation-based reward
system called ’bonds’ B. In this context, bi,j ∈ B represents the proportion of
bonds held by node i in node j.

Bonds accrue at each iteration in a manner akin to token inflation, where ∆B =
W · S. Through this process, nodes gather bonds in the nodes they rank,
effectively ’bonding’ themselves to those with whom they are connected.

Bt+1 = Bt +W · S

Utilizing the bond matrix B, the system redistributes the standard incentive
scores ∆S = BT · I. Similar to market speculation in traditional equities, nodes
that hold bonds in other nodes that are later recognized by others increase their
own inflation. Therefore, it is logical for nodes to accumulate bonds in other

5



nodes that are likely to perform well, as indicated by other stakeholders in the
network—essentially speculating on their future performance. This mechanism
is slightly modified to ensure nodes receive a fixed portion of their own inflation.
For example, at 50%, ∆S = 0.5BTI + 0.5I. The update step ∆S governs the
distribution of network incentives among the n nodes.

St+1 = St + τ∆S

5 Finding Consent

While the incentive mechanism rewards highly trusted nodes, it may not en-
tirely prevent collusion if honest nodes fail to achieve consensus. Unused or
loosely held stakes, as well as improperly set weights, can reduce the inflation
share of honest nodes when compared to a colluding sub-network. Even with
more stake, the honest network might not generate sufficient inflation to counter
its adversary. The dishonest sub-network only needs to generate enough infla-
tion to rival its main competitor, not necessarily to rule the network completely.

This issue arises when most of the token inflation is allocated to nodes that are
not trusted by the majority. To address this, the network employs a loss term
L = −R·(C−0.5). This term becomes negative if the majority of inflation goes to
nodes with more than 50% consensus. The network uses this loss calculation as
a corrective mechanism. Through increasing the number of weights an average
node assigns across the network, consensus can be better ensured.

f0 f1 f2 f3 → f0 f1 f2 f3

Figure 4: The left network demonstrates low consensus with L > 0. This
configuration is vulnerable to collusion by a minority group holding less than
50% of the total stake. To counter this, the system increases the number of
connections established by nodes until L < 0. When this occurs, inflation is
directed towards nodes with greater consensus.

6 Node Operation

To operate a node in the network, follow these steps:

1. The node defines its dataset Di, loss function Li, and parameterized function
fi.

6



2. At each training iteration, the node broadcasts batches of samples from Di

to its nodes as x = [batch size, sequence length, input size].

3. The responses F(x) = [. . . fj(x) . . .] from each node, having a common shape
fj(x) = [batch size, sequence length, output size], are combined using the gat-
ing function and used as input to the local model fi.

4. Comparing these responses to the target labels generates a loss-gradient ∂L
∂F ,

which is back-propagated through fi and disseminated to the network.

5. During steps 2 and 3, nodes learn the weights for their row wi,j ∈ W by
evaluating the signal values produced by their nodes.

6. At specific time steps t, participants submit updates to the weights ∆Wi to
adjust the ranking R, inflation I, consensus term C, and bond distributions ∆B.

7. The network assesses loss and optionally distributes newly created stake into
the network ∆S according to bond ownership.

7 Creating Regularity

A unified encoding for inputs and outputs is essential for the interaction of differ-
ent model types and input forms. Tensor modalities can be utilized to segment
the network into separate graphs. Initially, the network can start with a single
modality, such as TEXT, and later expand to include IMAGE, SPEECH, and
TENSOR. Eventually, combinations of these modalities, like TEXT-IMAGE,
can be incorporated to transition into a multi-modality environment.

To encourage the integration of different modalities, incentives can be aligned
with the same trust scaling mechanism. Successful models should eventually
be capable of receiving inputs from any modality and converting them into
a useful representation. For uniformity, a standard output shape, such as
[batch size, sequence dim, output dim], similar to the typical tensor shapes used
in language and image models, can be adopted across the network and adjusted
as the network’s complexity grows.

Focusing on abstract input classes helps ensure that participants develop a broad
multi-task understanding [9]. Participants might employ: 1. Entirely different
computing frameworks [10], 2. Diverse datasets [11], 3. Various models, and 4.
Unique strategies to optimize their incentives within the market. It is practical
for nodes to engage with unsupervised datasets, where data is inexpensive and
privacy concerns are minimal.

7



8 Calculation Conditions

As the network scales, managing outward bandwidth effectively becomes crucial
to prevent major bottlenecks. To address this, reducing network transfer and
implementing an efficient node selection method is essential. Conditional com-
putation can facilitate this by allowing nodes to use gradient descent to learn
how to select and prune their neighbors within the network. Techniques such
as a product key layer or a sparsely gated layer [12] can be employed to achieve
this.

fi = fi(G(x))

G(x) =
∑
j

gj(x) ∗ fj(x)

The conditional layer selects a sparse subset of nodes to query for each example
and recombines them multiplicatively. This approach reduces outward band-
width by querying only a limited number of nodes per example. This method
can significantly enhance outward bandwidth efficiency [12,13], enabling nodes
to communicate with a larger number of neighbors within the network. Essen-
tially, the layer functions as a trainable DNS lookup for nodes, based on inputs.
Additionally, since it is trainable with respect to the loss, it serves as an effective
proxy for the weights wi,j ∈ W.

9 Deriving Information

The interdependence of functions mandates that models must remain online
and are unsuitable for production. This reliance can be eliminated through
distillation [6], a technique for compressing and extracting knowledge. In this
process, a smaller model—the student—replicates the behavior of the broader
network. The distillation layer works alongside the conditional computation
layer, where the student model learns to imitate the network using the cross-
entropy (denoted as KL) between the logits from the gating network and the
student’s predicted output [14].

distillation loss = KLD(dist(x), G(x))

Since the distilled model serves as a proxy for the network, models can be
completely taken offline and evaluated. This separation allows recursion within
the network to be cut between components, enabling arbitrary network graphs.
If models go offline, their peers can use the distilled versions as replacements.
Private data can be validated using the distilled models rather than querying
the network. Eventually, components can fully detach from the network by
using the distilled models for offline validation and inference.

8



10 Learning Weights

The objective of this work is to create a ranking r = [ri] over nodes, where the
score ri ∈ R indicates a participant’s information-theoretic importance to the
benchmark. Inspired by the work of LeCun et al. [7] and Yu et al. [8], it is
logical to define this importance by equating it with the cost of removing each
node from the network. We can analytically derive this score, where ∆F(x)i
represents the perturbation of the j-th node’s inputs when the i-th node is
excluded from the network:

ri ≈
1

n

n∑
j

∑
x∈Dj

∆FT (x)i · H(Qj(x)) ·∆F(x)i

∆F(x)i = [0, . . . , 0,−fi(x), 0, . . . , 0]

Note that when the error function Qj is the twice-differentiable cross-entropy,
H(Qj) becomes its Fisher information matrix. Thus, ri ∈ R can effectively
measure each node’s informational significance to the entire network. However,
calculating information-theoretic weights requires the complete Hessian of the
error function. It is more feasible to employ a heuristic to propagate a contribu-
tion score from the error function to the inputs [8]. For example, weights from
the gating layer serve as a practical, differentiable proxy.

11 Complicity

Consider a scenario where a subset of nodes in the network form a cabal: a group
of colluding nodes attempting to maximize their inflation without accurately
evaluating their neighbors. The competition between the honest sub-graph A
with stake SA and the dishonest cabal B with stake SB is determined by the
proportion of network stake held by each group. The honest sub-graph must
achieve higher inflation to maintain its dominance and safeguard the network,
ensuring IA ≫ IB .

We assume the honest sub-graph A holds a larger proportion of the stake than
the dishonest sub-graph B, (SA > SB) and that the chain has reached a con-
sensus with L < 0. Since all nodes in B are distinct from A, our loss term
−RB · (CB − 0.5) > 0 is positive. Given that L < 0, it must be the case that
RA · (CA − 0.5) < 0, indicating there are nodes in the honest sub-graph A con-
nected to the majority.

As the chain progresses, newly minted stake is emitted at an inflation rate τ
proportional to I = R · T . Notably, the gradient of the incentive function with
respect to the stake is positive and super-linear at our inflection point between
the honest and dishonest sub-graphs. Specifically, δI

δS = 5
2 , ensuring that the

amount of stake held by each sub-graph reflects a non-linear change in their

9



inflation at the next iteration.

Initially, since SA > 0.5 and SB < 0.5, the proportion of stake emitted in
sub-graph A surpasses that in sub-graph B, and the incentive for sub-graph A
grows super-linearly compared to B. Consequently, the ratio of stake SB

SA+SB

decreases, forcing the cabal to continually add stake to its sub-graph to sustain
itself over time.

12 Conclusion

We have introduced an intelligence market operating on a P2P network out-
side a trusted environment. The benchmark measures performance based on
representational-knowledge production, using other intelligence systems to as-
sess its value. This collaborative and high-resolution approach suggests that the
benchmark could provide a more effective reward mechanism for the field overall.

To accomplish this, we began by defining a P2P network of abstract intelligence
models. We demonstrated how this framework enables the creation of a ranking
for each node based on the cost of removing it from the network. nodes nego-
tiated this score using a set of weights recorded on a digital ledger. However,
the system needed mechanisms to prevent participants from forming dishonest
sub-graphs.

To address this, we proposed an incentive scheme based on node connectivity,
which exponentially rewarded nodes for being trusted by a significant portion
of the network. This approach ensures that dishonest sub-graphs diminish in
importance over time.

Additionally, we illustrated 1. How nodes could reduce network bandwidth
by learning connectivity using a differential layer and 2. How they could ex-
tract fully network-disconnected machine learning models for production use.
The outcome is an intelligence market that rewards participants for generating
knowledge and making it accessible to new learners within the system.

References

[1] R. Schwartz, J. Dodge, N. A. Smith, and O. Etzioni, “Green ai,” arXiv
preprint arXiv:1907.10597, 2019.

[2] OpenAI, “Openai licenses gpt-3 technology to microsoft,” OpenAI Blog,
vol. 1, no. 1, p. 1, 2020.

[3] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training
of deep bidirectional transformers for language understanding,” arXiv
preprint arXiv:1810.04805, 2019.

10



[4] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, and I. Sutskever, “Lan-
guage models are unsupervised multitask learners,” OpenAI Blog, vol. 1,
no. 8, p. 9, 2019.

[5] F. Chollet, “On the measure of intelligence,” arXiv preprint
arXiv:1911.01547, 2019.

[6] G. Hinton, O. Vinyals, and J. Dean, “Distilling the knowledge in a neural
network,” arXiv preprint arXiv:1503.02531, 2015.

[7] Y. LeCun, J. S. Denker, S. A. Solla, R. E. Howard, and L. D. Jackel,
“Optimal brain damage,” vol. 2, pp. 598–605, 1989.

[8] R. Yu, A. Li, C. F. Chen, J.-H. Lai, V. I. Morariu, X. Han, M. Gao, C.-Y.
Lin, and L. S. Davis, “Nisp: Pruning networks using neuron importance
score propagation,” pp. 9194–9203, 2017.

[9] Kaiser, A. N. Gomez, N. Shazeer, A. Vaswani, N. Parmar, L. Jones,
and J. Uszkoreit, “One model to learn them all,” arXiv preprint
arXiv:1706.05137, 2017.

[10] M. A. Nugent and T. W. Molter, “Cortical processing with thermodynamic-
ram,” arXiv preprint arXiv:1404.5282, 2014.

[11] G. Lample and A. Conneau, “Cross-lingual language model pretraining,”
arXiv preprint arXiv:1901.07291, 2019.

[12] N. Shazeer, A. Mirhoseini, K. Maziarz, A. Davis, Q. Le, G. Hinton, and
J. Dean, “Outrageously large neural networks: The sparsely-gated mixture-
of-experts layer,” arXiv preprint arXiv:1701.06538, 2017.

[13] M. Ryabinin and A. Gusev, “Towards crowdsourced training of large
neural networks using decentralized mixture-of-experts,” arXiv preprint
arXiv:2002.04013, 2020.

[14] V. Sanh, L. Debut, J. Chaumond, and T. Wolf, “Distilbert, a distilled
version of bert: smaller, faster, cheaper and lighter,” arXiv preprint
arXiv:1910.01108, 2020.

11


